
DJ F1i1F COPY

I

_ W.RITO
D1SPJBTONSTATEMENT

Approved for public relecsa
Dstribution Unlimited

Parallel Processing of Biological Sequence

Comparison Algorithms'

Nolan G. Core2, Elizabeth W. Edmiston3,

Joel H. Saltz', and Roger M. Smith4

Research Report YALEU/DCS/RR-630 tv

July 1988

Contract N00014-86-K-0310 V/ D T C
J k ELE CTE

NOV 2 5 1988

YALE UNIVERSITY D

DEPARTMENT OF COMPUTER SCIENCE

88 10 . 1-84



ABSTRACT

Comparison of biological (DNA or protein) sequences provides insight into molecular

structure, function, and homology, and is increasingly important as the available data bases

become larger and more numerous. One method of increasing the speed of the calculations

is to perform them in parallel. We present the results of initial investigations using the Intel

iPSC hypercube and the Connection Machine for these comparisons. Since these machines
have very different architectures, the issues and performance trade-offs discussed have a
wide applicability for the parallel processing of biological sequence comparisons.

//

Contract N00014-86-K-0310

Parallel Processing of Biological Sequence

Comparison Algorithms'

Nolan G. Core2 , Elizabeth W. Edmiston 3 ,

Joel H. Saltz4 , and Roger M. Smith4

Research Report YALEU/DCS/RR-630

July 1988 OTtO

T T r 0 S7T AjNOV 2 5 M98
ApPT 11,,dio _ .l. --- '-- D

'This research was supported in part by the Office of Naval Research under contact No. N00014-86-K-
0310 and by NIH Grant T15 LM07056 from the National Library of Medicine.

2 Yale University School of Medicine
3 Duke University Department of Computer Science
4 Yale University Department of Computer Science



1 Introduction

The advent of new DNA sequencing technologies has led to an explosive
growth in the quantity of biological sequence information available to re-
searchers which is likely to accelerate in the future [1]. The benefits of
this sequence information have already been clearly established, with gains
in knowledge of the biological structure and function of many genes and
the proteins they encode, resulting iii important insights into human bio-
chemistry, physiology, and disease processes. The need to rapidly compare
these sequences continues to grow as the accumulated body of information
expands. As of August 1987, the Genbank database had approximately
15.000 entries with nearly 15 million nucleotides. Its rapid growth is indi-
cated by the fact that during its first two years of operation it took about
nine months to increase by 1 million bases, while a recent 1 million in-
crease required only nine weeks [5]. The average length of a sequence is
approximately 1000 nucleotides, and the longest is 172,282.

The algorithms used for this paper do not depend on the actual meaning
of the symbols being compared. Thus although simulated sequences were
used for the these studies, use of actual Genbank sequences would give
similar results. We implicitly assume that only one sequence comparison is
performed at a given time; in a Genbank search multiple sequences could

be compared, yielding greater efficiencies. The comparison of biological
sequences has at least two different, but related goals: (1) to find a measure
of the difference between the two sequences, representing what changes
would be needed to convert one into the other, and (2) to find the best
matched subsequence(s) within a pair of sequences. Two variants of a

dynamic programming algorithm can be used to achieve both goals.
Evolving multiprocesser computer architectures achieve their high per-

formance either through the use of a moderate number of fast and complex
processors or through the use of a large number of slower and simpler pro-
cessors. In either situation, it may be infeasible to support extremely fast
access from all processors to all of the memory in the multiprocessor. Mem-
ory is instead arranged hierarchically so that each processor has relatively

fast preferential access to certain portions of memory.
Machines able to logically share memory may employ fast local memo-

ries or caches [6]. Other high performance machines use only local mem-
ories: in these architectures processors communicate by passing messages

1



[9,31. In either of these cases the memory accessible to each processor is
organized in a hierarchical manner.

If an algorithm is organized efficiently, most computation can use lo-
cally available data. The placement of data in the memory system of the
multiprocessor makes a substantial difference in the time required for ac-
cessing information. A crucial aspect in the effective design and mapping
of algorithms to high performance machines is the need to appropriately
assign data and control so that large scale concurrency is possible. and so
that the quantity and pattern of multiprocessor interaction is in keeping
with the memory and communication characteristics of the machine. Two
key factors in achieving good multiprocessor performance are (1) achieving
adequate parallelism with an even distribution of load between processors.
and (2) partitioning a problem between processors in a way that takes
advantage of the hierarchical memory structure of the machine.

In this paper, implementations of two string matching algorithms are
examined on two different multiprocessor architectures: the Intel iPSC/1
hypercube and the Thinking Machines Connection Machine (CM-I). The
processors in the Intel iPSC/1 and the CM-I both communicate by passing
messages: thus for processor A to access information in processor B's lo-
cal memory, processor B must send processor A a message containing the
needed information. The Intel iPSC/1 allows the use of up to 128 relatively
fast processors, each of which address their own local memory. The cost
of sending messages is quite expensive compared to the cost of performing
computations. The CM-I allows use of up to 65.536 relatively slow bit serial
processors: communication is fast relative to the speed of the processors.
Each architecture embodies a crucial characteristic of high performance ar-
chitectures: the Intel machine allows us to examine the issues raised by the
existence of a memory hierarchy, while the CM-I allows us to explore the
use of large scale parallelism in performing these comparisons.

In Section 2 we describe the sequence matching algorithms, while in Sec-
tions 3 and 4 we present methods and experimental results for the iPSC/1
and CM-I. respectively. In Section 5 we compare results from the iPSC/1
and the CM-I. and in Section 6 we summarize the paper.



2 Description of Algorithms

The algorithms take as input two sequences A = ala2 ...aN and B =
blb2 ... bkI where M < N. The algorithm S-to-S (sequence to sequence)
returns the cost of changing A into B using the Needleman and Wunsch
[7] method with appropriate changes to allow a linear cost function for
consecutive indels (inserts or deletes). The subS-to-subS (subsequence to
subsequence) algorithm uses the method of Smith and Waterman [10] as
modified by Gotoh [4] to return the I best matches between subsequences
of A and B, where the output for each match consists of the value of that
match and the two subsequences.

2.1 Sequence to Sequence Matching

The cost for k indels is w(k) = u x k+v > 0, k > 0. w(0) = 0. The
comparison of sequence A with sequence B is performed by creating a cost
matrix D as follows:

D(i - 1,J - 1) + c(bi,a,),

D(i,j) = min P(i,j),
Q(i,j), O<i<M, O<J<N.

where f D(i - 1,j) + w(1),
P(i,j)=min P(i -1,j) + u.

and
Q D(i,j - 1) + w(1),

Q(i,j)=min Q(i,j -1) + u.

P(O,k) =Q(k,O) =D(k,0) = D(O,k) = w(k), Vk >0. --
Aocession For

c(bi, a1 ) represents the similarity between elements a, and bi where NTIS GAI
DTIC TAB

f> 0 if bi :A aj, Unannounced L]
c(ba)= 0 if bi = aj. Justifioatio

The value D(M, N) represents the cost of changing A to B. Dy
Dis ribution/

Availability Codes

3 A Av a~ i 'an d/o rDist Special

IN ! I I



2.2 Subsequence to Subsequence Matching

The equations for the subS-to-subS algorithm are very similar to the the
S-to-S algorithm and are given in detail in the Appendix.

3 Intel iPSC/1 Hypercube

We define a phase as a computational step during which nodes of the
iPSC/1 calculate submatrices in parallel at the same time and a block as a
submatrix which is calculated by a node of the iPSC/1 during one phase. If
we have P processors numbered 0 through P - 1, and assign strips of blocks
to processors in a wrapped manner so that strip s is assigned to processor
PEod(s,P), then when processor PEod(s.P) finishes the computation for a
step s, it must send data from its lowest row to processor PEmod(s+lp), to
enable that processor to compute step s + 1. In Figure 1 we depict the
matrix that is generated when two sequences of length nine are compared
using a three processor machine and blocks of size one, where the numbers
depict computational steps that must be performed sequentially. Exami-
nation of Figure I suggests that the use of larger block sizes may lead to a
reduction in communication delays at the expense of a deterioration in the
balance of load. Tiiis performance tradeoff is quantified in the following
subsections.

3.1 Predicted Performance of Various Block Sizes
With very general assumptions, we show below it is optimal to to make the
vertical block size as large as possible and to decrease the horizontal block
size until the increased communication cost becomes larger than the ben-
efit of decreased idle time. Estimated total time without communications
can be expressed as the sum of the time that would be required were the
computation evenly distributed between the processors in the absence of
any load imbalances plus the time wasted due to load imbalances:

T mn Tc mir(mn)(P -1)- +
P P

where Tc = calculation time per block, m = number of horizontal blocks.
n = number of vertical blocks, and P = number of processors. With these

4



definitions the number of phases = n + n - 1. Assuming that m and n
are multiples of P, the term for the idle time can be derived by noting that
during any phase j < min(m, n) - 1 when j is not a multiple of P, there
are P - J mod P processors idle. When j is a multiple of P, no processors
are idle. Thus the sum of the processor idle time for j < min(rm, n) - 1 is:

Tcmin(m, n) =(l - 1) Tcmin(m, n)(P - 1)
P*P 2P

Through similar reasoning, the sum of the processor idle time for the
last min(m, n) - 1 phases is the same. During the intermediate phases, the
load is balanced with min(m, n) blocks assigned to each processor. Thus
the total idle time is:

Tcmrin(m, n)(P - 1)
P

For simplicity of exposition, we shall continue this discussion in the
context of the communication costs incurred in a message passing environ-
ment, although a similar cost function applies to shared memory machines
in which processors have fast local memories or caches. If there are no
communication costs, Tc = s, where S = sequential time. Then the totalan'
estimated time equals

S S(P - 1)
P max(m,n)P (1)

Thus in the absence of communication costs, all terms involve m and n in
a symmetric manner.

First we show that in the presence of communication costs, we should
choose m > n. We calculate the size of the largest message that must be
sent between two processors during each phase. We assume that the time
required for communication is equal to the sum of the times required each
phase to send the largest messages. This tacitly assumes that the system
is essentially synchronous, that computation and communication occur in
alternating non overlapping periods of time.

The time required for communication can be safely assumed to be an
increasing function of message size. For phases 1 through min(m,n)-1, the
maximum number of data values sent by any processor is [p/P * Bs, where
p = phase number, Bs = X/m, and X = horizontal dimension of the matrix.

5



For phases min(mn) through m+n-min(m,n), the maximum number of
data values sent by any processor is [min(m. n)/P] * Bs, and for phases
m+n-min(mn)+l through m+n-1 a maximum of [(m +n -p)/P *Bs data
values. If Bs were held fixed, the time required for communication would
be symmetric in m and n. Since Bs is a decreasing function of m. it is
always advantageous from the standpoint of communication cost to choose
m >_ n. Since (1) is also symmetric in m and n, the minimum total time
always occurs when m > n.

To minimize all terms involving n, we should chose n to be as small as
possible, i.e. P. For m > n, (1) has no dependence on n. For any given m.
the communication cost does not increase with decreasing n. If dependency
graph G1 has rn by nj points and dependency graph Go has m by no points.
with nj <_ no, G1 can be embedded in Go. Since the communication cost per
block (Bs = X/m) is dependent only on m, G1 need have a commumication
requirement no greater than Go.

When n = P. we can combine all costs of calculating a block and com-
municating the block's data values into one number. TB, which is the sum
of Tc and the cost of communicating X/m data values. With these choices
of m and n, total time = TB x number of phases and the speedup equals

1
(P - 1)/rP + 1/P + (a + 3 * (X/m)) * (P + m - 1)/S

where the communication time per block is a + 3*message size. We de-
scribe in Section 3.3 a scheme that uses estimates of TB to adaptively choose
partitions for strings of differing lengths.

3.2 Timings

We have assumed the matrix size in either dimension is a multiple of the
number of processors. This will not have a large effect on the results for
reasonably sized problems since the matrix to be calculated can always be
slightly increased so that each dimension is a multiple of the number of pro-
cessors, and the analysis will apply without loss of generality. The timings
below make use of the observation in Section 3.1 that the vertical block
size should be made as large as possible. The total time is the sum of the
calculation, communication, and idle time (See Section 3.1). The calcula-
tion time is the time spent actually calculating elements of the matrix. The

6



communication time is the time transferring data between the processors,
and the idle time is the time processors are neither calculating or commu-
nicating elements of the problem. The calculation time can be measured
accurately and will be approximately the same for all processors since their
workloads are very similar. The difference between the total time and the
calculation time includes the idle time and the communication time. Since
total time is defined to be the same for all processors (they all start and
end at the same time), one processor can be used to represent the others.
The time per block, TB, is estimated as follows:

TB = total time

number of phases

where as previously defined, number of phases = m + n - 1.
Observed times for a 512 x 2048 matrix for the 32 processor hypercube

are as follows (The program is written in the C language and all times are
in seconds except as indicated):

Block Size
sizr(sizey 8x64 4x64 2x64 4x4 2x2 lxi

NumLer Phases 95 159 287 639 1279 2559

Total Time 13.9 12.5 13.9 18.1 27.1 54.7

More detailed analysis near the optimal block size is as follows:

Block Size Number Cal Comm EstOpt Total TB
size, size Phases Time Time Time Time (msec)

8 x 64 95 8.5 0.8 11.9 13.9 146
4 x 64 159 9.0 1.5 10.0 12.5 79
2 x 64 287 10.1 3.0 9.0 13.9 49

To estimate the communication time for a given problem, we ran the pro-
gram with the computations removed. In obtaining this communication
time estimate, the size and sequence of the messages sent remained the
same. The estimated optimal time indicates the computation time that
would be obtained in the absence of any multiprocessing overheads includ-

ing communication delays. The estimated optimal time is defined ab the
sequential time divided by the estimated speed-up, calculated as:

P * m. * n

m * n + min(r.n) * (P-1)

7



From this data we see that the optimal block size is 4 x 64. Block sizes
near the optimal block size give observed times that are near the optimal
time. Since the equivalent sequential time for this problem is 256.8 sec. the
execution time of 12.5 sec for the optimal block size represents a speed-up
of 20.5.

Observed times for a 1024 x 2048 matrix revealed that the optimal block
size is again 4 x 64 with an execution time of 23.2 sec and a speed-up of
22.1. The optimal block size for a 2048 x 2048 matrix is 8 x 64 with an
execution time of 43.0 and a speedup of 23.9. Using the TB of 79 msec from
above, the estimated total times (= TB x number of phases) for these two
problems are 22.6 and 41.9. and the estimated speed ups are 22.7 and 24.5.
respectively.

3.3 Implementation of the Adaptive Choice of Opti-
mal Block Size

We use regression to determine 132, 31, and 3o:

T9 = 32 x size, 3ize, + 31 x number of phases + 30

where TB = time per block, size. = size of block in horizontal direction.
sizey = size of block in vertical direction, 32 = calculation coefficient, and
31 = communication coefficient.

A good strategy to determine the initial regression equation is to select
a problem size in the middle range of the expected problem sizes and vary
the block sizes for that problem. Using the five data points obtained by
calculating a 512 x 2048 matrix with size, = 1. 2. 4. 8. and 16 and size
= 64 to determine the initial regression equation (which is adaptively up-
dated with each new observed point), the algorithm gives correct optimal
block sizes and predictions of total time that are within one second of that
observed for matrices ranging in size from 1024 x 4096 to 256 x 256. This
method will perform well in similar environments since, as shown in Sec-
tion 3.2. block sizes which are close to the optimal block size will give total
observed times which are close to the optimal total time.

Toward the end of the study, the new Intel iPSC/2 hypercube became
available. When the algorithm was run on the iPSC/2 hypercube, the same
method of using a 512 x 2048 matrix with the same five block sizes to de-

8



terminc he initial regression equation resulted in the following comparison
of pr,:dicted versus observed total times, using the block sizes specified by
t,,e algorithm:

Block Size Array Size Predicted Observed
size, size size, sizey Total Time Total Time

8 x 8 512x 512 0.7 0.7
4 x 16 512 x 1024 1.3 1.1
4 x 32 512 x 2048 2.2 2.1
4 x 64 1024 x 4096 7.5 7.4

All of the above suggested block sizes were optimal except for the 512 x
512 matrix where a 4 x 8 block was slightly faster (by .07 sec).

3.4 Implementation of the Traceback Procedure

The traceback procedure is needed to demonstrate the alignment of the
optimal subsequences of the two sequences. This requires the determina-
tion of the source of each matrix element so that one can start with any
maximum in the matrix and determine the sequence of calculations that
led to that value. One advantage of the hypercube is that each node has
approximately 4.5 million bytes of memory, which is more than enough to
store the needed information.

By using a binary code, each entry in the traceback matrix incorpo-
rates in a single number the path by which the corresponding entry in the
similarity matrix was obtained. Since an entry in the traceback matrix
has all the information available about the source of any similarity matrix
entry, it can be used to reverse the process, i.e. perform the traceback. The
following table shows the additional time needed for the traceback:

Array Size Vithout With
size, size Trace Trace
960 x 960 18.2 23.5
512 x 512 5.6 6.7
256 x 256 1.8 2.1

The additional time for the traceback is primarily due to the need to
calculate the additional traceback matrix. The need to determine the max-
imum in the matrix over all the nodes and the need to follow the trace back

9



across individual nodes also result in additional communication time. Once
the traceback matrix is calculated, the actual traceback is very fast (e.g. less
than one second for the 960 x 960 matrix). Since the overall effect is equiv-
alent to increasing the size of the original matrix. the traceback procedure
results in a constant percentage increase in total time (here approximately
30 percent). Thus the methods of Section 3.3 to choose optimal block size
can still be applied.

4 Connection Machine

The algorithms are parallelized on the CM-I by assigning a processor. PE.
to each row of the matrix and proceeding in a wave-like fashion [2], similar
to the method described above in Section 3 for the hypercube. To keep
track of the I best subS-to-subS matches, a list of the I best matches
found so far at PE (row i of the matrix) is associated with each processor
PEj. Each time a new entry is computed a new set of starting coordinates
is determined which corresponds to the new entry. After each new entry
is computed a check is done to see if that value belongs on the best list
for that PE. Only one best value in a PE is allowed to start with a given
coordinate, since a second match with the same starting coodinate as a
better match does not provide a significant amount of new information.

Once the similarity matrix has been computed. each PE contains the I
best values which occurred in its row, along with their starting coordinates.
A global maximum is obtained to determine the overall best match, which
is output. A check is obtained to eliminate all values on the best lists
with the same start coordinate. Again a global maximum is obtained to
determine the next best match. This continues until the I best matches
have been found.

While we can determine where the best match occurs, we are presently
unable to determine what the match actually looks like. i.e. which elements
are matched to which elements. Normally the match is determined by
performing a traceback through the similarity matrix. However, since the
sequences we are dealing with can be quite large and the memory in a single
PE is limited, it is impossible to remember an entire row of the matrix on
a PE. We have developed, but not yet implemented, a method of finding
the best match which is described in Section 4.2. We estimate that this

10



method will increase the run time of the algorithm by a factor of 3 to 5.
depending on the amount of memory available. The idea is to execute the
algorithm once and determine approximately where the best match occurs
within the matrix. The algorithm is then run a second time and only that
portion of the matrix which was found to be of interest is remembered. A
traceback is then performed to determine the best match.

4.1 Timings

We performed various timings on a set of problem sizes (-I x N). In order
to obtain the parallel times we looped through the entire algorithm (with
the exception of CM-init() which initializes the CM) ten times and divided
that time by ten to obtain the execution time. The sequential times were
obtained by running the same algorithm on the VAX 8650 which serves as a
front-end for the CM-I . Times are given in sec. The programs are written
in the CM-I 's PARIS language.

The following table shows times for the S-to-S algorithm on the VAX and
in parallel, and for the subS-to-subS algorithm on the VAX when keeping
track three matches and in parallel when keeping track of one, three, and
ten matches.

VAX CM VAX CM
Problem S - to - S S - to - S subS One Three Ten

Size Time Time Time Match Matches Matches
4K x 4K 1865 28.7 8070 51.1 60.5 108.7
4K x 8K 3434 34.1 15639 75.3 90.2 166.3
4K x 16K 6693 57.9 28583 124.4 150.0 270.3
SK x 8K 8494 47.4 21880 101.3 121.7 222.0
8K x 16K 16575 72.0 150.7 181.0 338.9
8K x 32K 116.7 248.7 303.3 542.4

The above data show that parallel processing of the comparison results
in times which are 65 to 230 times as fast as the VAX 8650, with this
factor increasing as the problem size increases. The following two factors
are important in considering this data:

1. The sequential algorithm was executed on the VAX 8650 front-end

11



to the CM-I. which is much faster than a bit serial processor of the
CM-I.

2. Parallelizing an algorithm causes a number of additional instructions
to be added to the algorithm since various processors need to be
turned on or off for different phases of the computation.

Another interesting point is that the execution time needed for three
matches is approximately 1.2 times that needed for a single match, and
for ten matches is approximately 2.2 times that for a single match. This
implies that the calculation of the matrices in Section 2.2 is the most compu-
tationally expensive part of the algorithm. The time needed for additional
matches is a relatively small incremental cost for the user. This is a natu-
ral and desirable property since in order to find the best subsequence, the
algorithm must look at all possible subsequences.

4.1.1 Communication Time

Comparisons of run times with and without the communication (CA'Lsend)
step for matrices of size 4K x (4K, 8K, 16K) and 8K x (8K, 16K, 32K) for
both the S-to-S and subS-to-subS algorithms resulted in ratios of run times
with communication to run times without communication ranging from
0.95 to 1.11. Given the experimental error, this is consistent with a small
percentage contribution by the communication step to the total time.

4.2 Performing a Traceback with Limited Memory

As stated earlier, each processor in the CM-I has insufficient memory to
retain an entire row of the traceback matrix. The following algorithm can
be used to the reduce the amount of the traceback matrix which needs
to be stored in order to perform a traceback. This method is designed
for the S-to-S problem. A similar method appears to be applicable to the
subS-to-subS problem. This method has not yet been implemented on the
CM.

1. Assign special columns Ck, 0 < k < H (H is dependent on the amount
of memory available), such that Co = 0 and Ck - Ck- = LVj,l~k<H.

12



2..As each entry in the cost matrix is calculated, the variable ROW in
each processor keeps track of the originating row with respect to the
most recent special column for that entry.

3. If the entry's column is itself a special column, then set Ri.k = ROW
and ROW = i.

4. At the end of the cost matrix calculation (PASS 1) the variable ROV
in processor M allows a traceback that defines a path linking the
special columns Ck.

5. A local origin is the intersection of the traceback path with a special
column. Each local origin is the upper left corner of a rectangle
extending right to the next special column (inclusive) and down to
the row of the next special origin (exclusive). These rectangles define
areas in which the traceback must occur. Their reduced combined
size with respect to the original cost matrix, -, will in many cases
allow the reduced traceback matrix (requiring 4 bits per entry) to
be calculated (PASS 2.1). If there is still insufficient memory, each
rectangle can be processed in the same way as the original cost matrix
(Now this is PASS 2.1.), giving a traceback matrix which is further
reduced in size by an additional factor of H (PASS 2.2).

6. Once the reduced traceback matrix is calculated. the traceback can
be performed to determine the optimal alignment (PASS 3).

Table 1 shows a schematic representation of the process and Table 2
shows the marked reduction in storage needed. The number of bits needed
per PE to remember the Ri.k values is 16 x H. The number of bits needed per
PE to remember the once reduced traceback matrix is 4 x -. To determine
the minimum amount of memory needed per PE these values are minimized.
Thus, 16 x H is set equal to 4 x N and H is determined. The number of bitsneeded per PE to remember the twice reduced traceback matrix is 4 x

NN

Now 16 x H is set equal to 4 x - and again H is determined.

13



I_ ..._'" ... r 2 ... r3 ... ___....4_

PEI

PE,1  R, = 0

PE,, = 11

PE,3  R13.3 = i

PE,4  = 13

PE.11  ROWM =1i4

Table 1: Reduced Traceback Matrix

Number of bits

N Traceback Matrix the Traceback Matrix the Traceback Matrix

4K 16K 512 bits 163 bits
8K 32K 728 bits 208 bits

161C 64K 1024 bits 256 bits
32K 128K 1456 bits 327 bits
64K 256K 2048 bits 419 bits

128K 512K 2896 bits 512 bits
256K 1M 4096 bits 655 bits
512K 2M 5793 bits 816 bits

131 4M 8192 bits 1024 bits

Table 2: Number of bits needed in each PE to perform a traceback is
dependent upon the size of N.

14



5 Comparison of Connection Machine and
the Intel iPSC/1 Hypercube

The following table shows the comparative times for the subS-to-subS al-
gorithm on the CM-I and the Intel iPSC/1 hypercube. Neither algorithm
includes the traceback. Since the traceback has not been implemente I on
the CMNI-I, we cannot yet make any judgments on the relative performance
of usable sequencing algorithms on the two architectures. It does seem to
be extremely likely that the extra cost required to perform the traceback
will be proportionally much larger on the CM-I than on the iPSC/1.

Array Size Connection Intel
size, sizey Machine Hypercube

1024 x 1024 13.1 14.1
2048 x 2048 25.9 43.0
4096 x 4096 55.4 157.0

The CM-I and the Intel iPSC/1 hypercube are comparable for smaller se-
quences, but diverge as the size of the sequences gets larger. This is because
the time increases only by the increased factor of one dimension for the CMN-
I (up to the maximum number of processors available), while the time for
the hypercube increases by the product of the increased factors of both
dimensions. The CXI-I would be expected to be slower than the iPSC/1
for smaller problems.

6 Summary

The work in this paper demonstrates methods of implementing biological
(DNA or protein) sequence comparison algorithms on the Intel iPSC/1 hy-
percube and the CM-I, machines which have very different architectures.
The CM-I is significantly faster when the sizes of the sequences to be com-
pared are relatively large. However, the small memory for each of the CI-I
processors prevents the storage of the necessary information for the trace-
back procedure. Consequently, the traceback must be performed in more
than one pass. The Intel iPSC/1 hypercube, on the other hand, has more
than enough storage for the traceback procedure, but is slower for larger

15



size sequences because it has two orders of magnitude fewer processors than
the CM-I. However, the new Intel iPSC/2 hypercube is faster by a factor of
4 to 5, and the new CM-II has more memory. The conceptual framework
and analytical tools developed by this work on these machines will be use-
ful for their newer versions, as well as other machines which share some of
their architectural characteristics.

16



7 Appendix: Subsequence to Subsequence
Matching

SubS-to-subS uses the method of Smith and Waterman [10] as modified
by Gotoh [4] for determining subsequence to subsequence matches. The
method maximizes a match instead of minimizing a cost.

D'(1 -1) +c'(bia,),

D'(i,j) = max QI(izj)l

O, 0<11<M. 0O<j<N.

where
P'(, =max D'(i -1,)+ w'(1),
P'(~j = ax P'(i 1,) + u'.

and

Q'(1,(J) i -m1)+x
I'( -Q'(i 1) + U'.

P'(0, k) = Q'(k,0) = D'(k,0) = D'(0,k) = 0, Vk > 0.

In this case w'(k) = -w(k), Vk > 0 and

c'(bi, aj) = _0 if bi = a s .

The best match between subsequences is evaluated at D'(i2 ,j 2 ) where

D'(Z2,j 2 ) > D'(i,j), 0 < i < M, 0 < i < N.

This corresponds to ma tching the subsequence a,, ..a-2 to subsequence bi,..hi2
where 0 < i 1 _ i2 and 0 < j1 < 12. (i11,j) is the starting coordinate for
this match.

17

J





References

[1] "Academy Backs Genome Project." Science (1988). 239, 725-726.

[2] Edmiston, E. W. and Wagner, R. A. "Parallelization of the Dynamic
Programming Algorithm for Comparison of Sequences." Proceedings
of the 1987 ICPP, 78-80.

[3] Gabriel. R. P. "Massively Parallel Computers: The Connection Ma-
chine and NON-VON." Science (1986). 231. 975-978.

[4] Gotoh. 0. "'An Improved Algorithm for Matching Biological Se-

quences." Journal of Molecular Biology (1982),162, 705-708.

[5] Hilofsky, H.S. and Burks C. "The Genbank Genetic Sequence Data-
bank" Nucleic Acids Research (1988), 16, 1861-1863.

[6] Kuck, D. J. et al. "Parallel Supercomputing Today and the Cedar
Approach." Science (1986), 231, 967-974.

[7] Needleman S. B. and Wunsch C. D. "A General Method Applicable
to the Search for Siimilarities in the Amino Acid Sequence of Two
Proteins." Journal of Molecular Biology (1970), 48, 443-453.

[8] Saltz, J. H. "Automated Problem Scheduling and Reduction of Syn-
chronization Delay Effects." Technical Report 87-22, ICASE, July
1987.

[9] Saad, Y. and Schultz, M. H. "Topological Proerties of Hypercubes."
Technical Report RR-389, Yale University Department of Computer
Science, May 1985.

[10] Smith. T. F. and Waterman, M. S. "Identification of Common Molecu-
lar Subsequences." Journal of Molecular Biology (1981), 147. 195-196.

18



Processor1 1 2 3 4 5 6 7 8 9

Processor 2 2 3 4 5 6 7 8 9 10

Processor 3 3 4 5 6 7 8 9 10 1

Processor 1 4 5 6 7 8 9 10 11 2

Processor2 5 6 7 8 9 10 11 12 13

Processor 3 6 7 8 9 10 11 12 13 14

Processor1 7 8 9 10 11 12 13 14 1s

Processor 2 8 9 10 11 12 13 14 15 16

Processor 3 9 10 11 12 13 14 15 16 17

Figure 1 Computational Steps for 1 X 1 Blocks in a 9 X 9 Matrix

19


